История создания микроскопа и его устройство

Алан-э-Дейл       29.04.2022 г.

§ 3. Устройство микроскопа и техника микроскопирования

Для исследования дрожжей, бактерий и плесневых грибов применяют микроскопы, предназначенные для рассмотрения прозрачных препаратов в проходящем свете (рис. 8).

Рис. 8. Микроскоп МБИ-1: 1 — зеркало, 2 — конденсор, 3 — предметный столик, 4 — объективы, 5 — револьвер, 6 — окуляр, 7 — тубус, 8 — тубусодержатель, 9 — макрометрический винт, 10 — микрометрический винт, 11 — ножка

Оптическая часть микроскопа. Основной частью оптической системы микроскопа является объектив, увеличивающий изображение предмета. Он состоит из ряда линз, склеенных канадским бальзамом и заключенных в металлическую трубку; на трубке имеется резьба, при помощи которой объектив ввинчивается в специальное гнездо револьвера.

Изображение, даваемое объективом, рассматривают с помощью окуляра, находящегося в верхней части тубуса микроскопа. Биологические микроскопы снабжаются тремя сменными окулярами. На верхней оправе линзы окуляра указано его увеличение. Обычно окуляры дают увеличение в 7, 10 и 15 раз. Общее увеличение объекта микроскопом равно произведению увеличения окуляра на увеличение объектива = 900 раз.

Осветительное устройство располагается под столиком микроскопа и состоит из конденсора с ирис-диафрагмой и зеркала.

Механическая часть микроскопа. Эта часть состоит из штатива, тубусодержателя с револьвером, винтов для передвижения тубуса (макрометрического и микрометрического), осветительного аппарата и предметного столика микроскопа. Основными частями штатива являются нижняя подставка (ножка), придающая микроскопу устойчивость, и тубусодержатель микроскопа.

Техника микроскопирования. Прежде чем начать микроскопирование, необходимо установить правильное освещение. Для этого с микроскопа снимают окуляр и, глядя прямо в объектив, устанавливают зеркало так, чтобы источник света (лампа или окно) были видны посредине объектива. После предварительной установки света на предметный столик микроскопа кладут готовый препарат и закрепляют его зажимами. При помощи макрометрического винта опускают тубус почти до соприкосновения с покровным стеклом. Затем, глядя в окуляр, постепенно поднимают тубус до появления изображения. Для наведения резкости пользуются микрометрическим винтом.

При микроскопиравании следует держать оба глаза открытыми. Смотрят в микроскоп левым глазом.

Техника приготовления препарата для микроскопирования

Каплю исследуемой жидкости наносят на чистое предметное стекло и осторожно накрывают покровным стеклом. Если препарат готовят с плотной питательной среды, то на предметное стекло наносят капельку чистой водопроводной воды, в нее помещают исследуемую культуру и препарат накрывают покровным стеклом

Под последним не должно оставаться пузырьков воздуха, так как они мешают микроскопированию. Избыток жидкости, выступающий из-за покровного стекла, убирают фильтровальной бумагой, заранее нарезанной небольшими узкими полосками. Готовый препарат помещают на предметный столик и исследуют.

Техника посевов на питательные среды и состав сред описаны в разделе «Микробиологический контроль».

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Механические элементы

В любом микроскопе присутствуют элементы, которые позволяют исследователю управлять фокусом, регулировать положение исследуемого образца, настраивать рабочее расстояние оптического прибора. Все это часть механики микроскопа: коаксиальные механизмы фокусировки, препаратоводитель и препаратодержатель, ручки регулировки резкости, предметный столик и многое другое.

Виды микроскопов

За всю историю развития микроскопной техники было изобретено множество приборов. Все они отличались устройством и принципом действия. Основные виды микроскопов:

  • оптические;
  • электронные;
  • сканирующие зондовые;
  • рентгеновские.

Оптические и электронные

Самым простым и недорогим устройством считается оптический прибор. По своим техническим параметрам он позволяет увеличивать изображение объекта в 2 тыс. раз. Благодаря такому высокому показателю, с помощью оптического микроскопа можно исследовать:

  • структуру клеток;
  • поверхность ткани;
  • дефекты на искусственных объектах и т. д.

Более современным прибором считается электронный микроскоп, который может увеличивать изображение предмета в 20 тыс. раз. От оптического устройства он отличается тем, что вместо луча света используется пучок электронов. Специальные магнитные линзы преобразовывают в изображение перемещение отрицательно заряженных частиц, а направленность пучка регулируется изменением магнитного поля.

Использование прибора в комплексе с компьютером позволяет значительно увеличить изображение и одновременно сделать снимок объекта. Недостатком таких устройств считается высокая стоимость и их эксплуатация только в лабораторных условиях, так как молекулы воздуха воздействуют на электроны, нарушая четкость изображения. Кроме того, чтобы на функционирование микроскопа не влияли внешние магнитные поля, лаборатории размещают в подземных бункерах с толстыми стенами.

Зондовые и рентгеновские

Сканирующие устройства позволяют получить нужное изображение с помощью специального зонда, который выполняет роль объектива и проводит исследование объекта. В итоге получается трехмерное изображение с точными характеристиками исследуемого предмета. Эта новая техника обладает довольно высоким разрешением, а зонд представляет собой сложный механизм, оснащенный чувствительными сенсорами, которые реагируют на перемещение электронов.

Зачастую такие конструкции используются для сканирования объектов со сложным рельефом. Сканерами исследуются внутренние пространства труб и мелких тоннелей. В результате исследования полученные первоначальные показатели обрабатываются математическим методом с помощью специальной компьютерной программы.

Для исследования предметов, размеры которых соизмеримы с длиной электромагнитных волн от 10 до 0,001 нм, применяются рентгеновские микроскопы. По своим характеристикам и эффективности работы эти приборы находятся между оптическими и электронными устройствами. Рентгеновские волны могут проникать сквозь поверхность объекта, поэтому существует возможность, кроме структуры предмета, узнать его химический состав.

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы

Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа

Обозначения для фильтров

Производители разрабатывают собственные системы кодов для обозначения фильтров, используемых во флуоресцентной микроскопии, что нередко приводит к путанице в терминологии. Кодировка в основном отражает вещественный состав изделия или его функциональные свойства.

При маркировке фильтров возбуждения часто используют аббревиатуры UG и BG, обозначающие ультрафиолетовое и синее стекла соответственно.

Дихроичные светоделители маркируются следующими акронимами: DM — дихроичное зеркало, CBS — хроматический светоделитель, TK — щелевой делитель, FT — делитель цвета, RKP — узкополосный отражатель. Все эти обозначения взаимозаменяемы.

Эмиссионные фильтры кодируются следующими символами: L или LP — широкополосный элемент, GG или Y — желтое стекло, OG или O — оранжевое стекло, RG или R — красное стекло, BA — запирающее стекло, K — щелевой фильтр.

Иногда наряду с акронимом присутствует числовое значение, указывающее на длину волны в нанометрах, на которой фильтр достигает половины величины максимальной пропускной способности.

Флуоресцентный светофильтр.

Основные параметры

К другим важным параметрам в строении микроскопа относятся его увеличение, насадки, размер предметного столика, возможности подсветки, оптическое покрытие и т. д.

Рассмотрим главный из перечисленных в этом пункте показателей – увеличение.

Увеличение – это общая способность микроскопа показывать изучаемые объекты в больших размерах, чем они есть на самом деле. Вычисление этого параметра можно произвести путем умножения объективного увеличения на окулярное. Данная возможность в оптических микроскопах доходит до 2000 крат, а электронный имеет увеличение в сотни раз больше, чем световой.

Основная характеристика микроскопа – это именно его разрешающая способность, а также увеличение

Поэтому при выборе такого прибора на эти показатели необходимо обратить особое внимание

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Что такое «диафрагма микроскопа»: поговорим об осветительной системе

Для наблюдений микромира хорошее освещение настолько же важно, как и качество оптики микроскопа. Светодиоды, галогенные лампы, зеркало – для микроскопа могут использоваться разные источники освещения

У каждого есть свои плюсы и минусы. Подсветка может быть верхней, нижней или комбинированной. Ее расположение влияет на то, какие микропрепараты можно изучать при помощи микроскопа (прозрачные, полупрозрачные или непрозрачные).

Под предметным столиком, на который кладется образец для исследований, располагается диафрагма микроскопа. Она может быть дисковой или ирисовой. Диафрагма предназначена для регулировки интенсивности освещения: с ее помощью можно отрегулировать толщину светового пучка, идущего от осветителя. Дисковая диафрагма – это небольшая пластина с отверстиями разного диаметра. Ее обычно устанавливают на любительские микроскопы. Ирисовая диафрагма состоит из множества лепестков, с помощью которых можно плавно изменять диаметр светопропускающего отверстия. Она чаще встречается в микроскопах профессионального уровня.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Оптическая часть: окуляры и объективы

Объективы и окуляры – наиболее популярные запчасти для микроскопа. Хотя далеко не все микроскопы поддерживают смену этих аксессуаров. Оптическая система отвечает за формирование увеличенного изображения. Чем она лучше и совершеннее, тем картинка получается четче и подробнее. Но высочайший уровень качества оптики нужен только в профессиональных микроскопах. Для любительских исследований достаточно стандартной стеклянной оптики, обеспечивающей увеличение до 500–1000 крат. А вот пластиковых линз мы рекомендуем избегать – качество картинки в таких микроскопах обычно расстраивает.

Исторические сведения

Кем был создан первый микроскоп в истории человечества, определить довольно проблематично. Впервые такой механизм был изобретен на рубеже шестнадцатого и семнадцатого веков. Вероятным изобретателем считают Захария Янсена, голландского ученого.

Будучи еще ребенком, Янсен используя дюймовую трубочку, установил на двух ее краях по одной выпуклой линзе. Увиденное заставило изобретателя создать нечто новое и улучшить его. Возможно, это обусловило изобретение первого в мире микроскопа, что произошло приблизительно в 1590 году.

Однако еще в 1538 г. итальянец Дж. Фракасторо, работая врачом, выдвинул предположение о комбинировании двух линз с целью создания еще большего увеличения изображений. Следовательно, его работа могла стать началом для появления первого микроскопа. Хотя термин был введен гораздо позже.

Другим первооткрывателем считается Галилео Галилей. Услышав приблизительно в 1609 г. о появлении такого увеличительного устройства и разобравшись в общей идее его механизма, уже в 1612 г. итальянский физик создал собственное массовое изготовление микроскопов. Название этому прибору дал академический друг Галилея, Джованни Фабер в 1613.

Уже в шестидесятых годах XVII века были получены данные о применении микроскопа в научной исследовательской деятельности. Первый это сделал Роберт Гук, занимавшийся наблюдением за устройством разнообразных растений. Именно он в работе «микрография» сделал зарисовки увиденного в микроскоп изображения. Он установил, что растительные организмы строятся из клеток.

Наилучшие бинокулярные микроскопы

Оптимальным решением в целях наблюдения за непрозрачным объектом (насекомые, минералы) станут бинокулярные микроскопы. Они дают возможность получить объемное изображение объекта, в то же время увеличение зачастую не сыграет ключевой роли.

BRESSER Advance ICD 10x-160x

Из микроскопов технического предназначения рассматриваемое изделие считается наиболее производительным. Окуляры устанавливаются под наклоном 45 градусов, могут вращаться вокруг оси. Устройство даст качественное изображение благодаря оптике с многослойным просветлением. Изделие имеет популярность у ученых, а также среди коллекционеров и ювелиров. Увеличить контрастность картинки возможно посредством синего светофильтра.

Специалисты называют приспособление одним из лучших в диапазоне благодаря надежности и длительности эксплуатации. Лидерам устройство уступит лишь в подсветке и функционалу. Корпус из металла и плавная фокусировка заслуживают от потребителей наилучших оценок.

Плюсы:

  • корпус из металла;
  • большая сфера использования;
  • высококачественная сборка.

Минусы:

  • завышенная стоимость;
  • недостаточное освещение.

Micromed 1 var. 2 LED

Данное устройство является наиболее доступным в стоимости. Приспособление создано для диагностики в сфере медицины, биологии и химии. Прибор способен функционировать по методу светлого поля и с конденсором в темном поле. Исследуются неокрашенные и окрашенные предметы.

Разработчик предусматривает опцию выведения изображения на монитор ПК. В этих целях требуется вспомогательно купить видеоокуляр. Специалисты по достоинству оценивают производительное светодиодное освещение, яркость которого возможно отрегулировать.

Потребители преимущественно удовлетворены работой устройства, в частности яркостью освещения и опция обширного использования. Из недостатков отмечают наклон внешней насадки и ограниченность диапазона увеличения.

Плюсы:

  • бюджетная стоимость;
  • обширная область использования;
  • мощное освещение.

Минусы:

  • ограниченность диапазона увеличения;
  • некомфортный угол наклона.

Levenhuk 850B

Рассматриваемое приспособление возможно заметить в медучреждениях различного типа. Данное устройство предназначается в целях проведения важных исследований. Характерной чертой изделия специалисты считают опцию изучения микропрепаратов посредством темного поля. Галогенное освещение функционирует от электросети, присутствует регулирование яркости светопотока.

Устройство оснащается несколькими объективами, поворачиваемыми посредством револьверного механизма. Вместо окуляра допустимо установить цифровую камеру Levenhuk. В комплектации присутствуют требуемые принадлежности в целях подсоединения камеры к приспособлению. Прибор считается лучшим в данном диапазоне благодаря высококачественной оптике и широкому функционалу в целях исследования.

Плюсы:

  • большое диапазон увеличений;
  • галогенное освещение;
  • бинокулярная насадка;
  • интегрированный конденсор темного поля.

Минусы:

не установлены.

Микроскопы компании Nikon

Микроскопы торговой марки Nikon занимают высшую ступеньку. Это современные микроскопы, в которых конструкторы интегрировали самые новые и современные инновационные технические решения и возможности мировой науки и техники.

По сфере применения микроскопы компании Nikon подразделяются на следующие группы:

  • биологический микроскоп;
  • стереомикроскопы.

Биомедицинские или биологические микроскопы Nikon используются для современных биологических и медицинских исследований по изучению живых организмов и объектов, а также для автоматизированных и многоцелевых лабораторных анализов.

Среди биомедицинских Nikon выделяются следующие модельные ряды:

  • Микроскоп Nikon Eclipse Е;
  • Микроскоп Nikon Eclipse Ci;
  • Микроскоп Nikon Ni;
  • Микроскоп Nikon Ti.

Стереомикроскопы Nikon позволяют оператору наблюдать трёхмерный объект исследования с возможностью получения вполне естественного изображения.

Среди стереомикроскопов Никон выделяются следующие серии моделей:

  • Микроскоп Nikon SMZ1270/1270i;
  • Микроскоп Nikon SMZ800N;
  • Микроскоп Nikon SMZ25/SMZ18;
  • Микроскоп Nikon SMZ745/745T;
  • Nikon SMZ660;
  • Nikon SMZ445/460.

Документация(фиксирование) изображения.

Интеграция современных микроскопов Nikon с цифровыми камерами позволяет вести непрерывное наблюдение за рассматриваемыми объектами с одновременной фиксацией и записью их изображений. Цифровые камеры, в настоящее время широко применяются для наблюдений за живыми организмами, а также в других отраслях науки и техники.

Компания Nikon выпускает следующие цифровые камеры:

Nikon DS-Fi2 Nikon DS-Qi1 Nikon DS-Vi1 Nikon DS-Fi1c Nikon DS-Ri1

  • цифровую камеру Nikon DS-Fi2;
  • цифровую камеру Nikon DS-Qi1;
  • цифровую камеру Nikon DS-Vi1;
  • цифровую камеру Nikon DS-Fi1c;
  • цифровую камеру NikonDS—Ri1.

Подробно о конструкции и принципе работы микроскопа

Устройство разработано на базе традиционного оптического микроскопа, но имеет иной принцип работы. Исследуемый образец помечают люминесцирующими веществами, а затем с помощью сложной системы фильтров собирают испускаемые фотоны и визуализируют микрообъекты.

Устройство микроскопа

В основном прибор обладает всеми модулями, характерными для оптических микроскопов. Однако он, в отличие от них, оснащен флуоресцентным модулем.

Задачами данного технологического узла являются направление возбуждающего излучения на образец и последующее отделение отраженного света от общего потока. Для этого используется сложная система фильтров, объединенных в единый блок.

Такие приборы плохо подходят для возбуждения флуоресцирующих красителей, поглощающих излучение в коротковолновом диапазоне. Вместо них применяют галогенные или светодиодные лампы.

Устройство флуоресцентного микроскопа.

Конструкция фильтров-блоков

В основе конструкции микроскопа лежит блок, включающий набор следующих оптических элементов:

  • фильтра возбуждения;
  • дихроичного светоделителя;
  • эмиссионного фильтра.

Фильтр возбуждения принимает излучение от источника света, пропуская длины волн заранее установленного диапазона. Дихроичное зеркало сначала отражает фотоны через оптический объектив на образец, а затем направляет флуоресценцию к системе обнаружения. Далее на пути испускаемого излучения стоит эмиссионный фильтр, который блокирует нежелательные волны.

При установке фильтров важно обеспечить правильный угол наклона и ориентацию относительно светового пути, чтобы эффективно управлять фотонным потоком. Производители помечают в основном белой точкой отражающую сторону дихроичного зеркала, а на остальных деталях указывают направляющие стрелки

Производители помечают в основном белой точкой отражающую сторону дихроичного зеркала, а на остальных деталях указывают направляющие стрелки.

Конструкция и спектральная характеристика фильтр-блоков.

Используемые осветители

В качестве источников света люминесцентные микроскопы чаще используют галогенные лампы. Они имеют небольшие размеры, хорошую цветопередачу и невысокую стоимость. Однако из-за низкой яркости и малого срока службы эти устройства постепенно вытесняются светодиодными LED-элементами.

Источники света на основе LED-технологии считаются самыми востребованными в современной микроскопии. Это универсальные полупроводниковые осветители, обладающие широким набором спектральных характеристик. Они позволяют использовать излучение в диапазоне от ультрафиолетовой до ближней инфракрасной зоны.

Это надежные и непрерывно работающие установки, обладающие наиболее высокими значениями яркости по сравнению галогенными и светодиодными приборами.

Однако они имеют ряд существенных недостатков: малый срок службы, изменение спектральной характеристики с возрастом и продолжительные интервалы между выключением и включением.

Спектральная интенсивность ртутной лампы НВО 100.

Флуоресцентные камеры

Камера считается одним из важнейших и самых дорогих компонентов микроскопа. Она должна обладать высокой чувствительностью и низким уровнем шума, чтобы захватить как можно больше фотонов.

Для флуоресцентной визуализации предпочтительно монохромное устройство, которое обеспечивает одинаковое обнаружение сигналов на всех пикселях и увеличивает общую чувствительность.

Они преобразуют волновые сигналы в электрические заряды, которые поступают на усилитель, а затем передаются в аналогово-цифровой преобразователь.

В CCD-камерах все сигналы сканируются одновременно, что позволяет снизить уровень шума и повысить чувствительность. В sCMOS-устройствах считывание происходит произвольно, вследствие чего возникают нежелательные вибрации, искажается геометрия объектов при визуализации.

Выбор камеры зависит от типа исследуемых образцов, требуемой частоты кадров, угла обзора, разрешения и чувствительности. Например, для промышленных изысканий необходимы высокое качество изображений и скорость работы, а для медико-биологических исследований важнее чувствительность устройства.

Высокочувствительные камеры с большим разрешением.

Как устроен микроскоп

Приобретая микроскоп, вы сможете расширить границы своих возможностей, заглянуть в микрокосмос и изучить его обитателей. Попробуйте стать исследователями окружающего мира, однако первым делом познакомьтесь с устройством микроскопа и правилами, которые необходимо соблюдать при работе с ним.

Микроскоп — сложный оптический прибор. Чтобы научиться с ним работать, необходимо знать, из каких частей он состоит

Для того чтобы правильно использовать световой микроскоп, необходимо знать его строение и понимать принцип работы.

Если посмотреть на микроскоп в целом, то это всего лишь очень сильное увеличительное стекло. Увеличивает микроскоп с помощью нескольких линз, одна часть которых находится в окуляре, а другая — в объективе. Мощность линз всегда указана на их оправе. Для того чтобы узнать мощность вашего микроскопа, необходимо перемножить цифры на объективе и окуляре. Так, если микроскоп имеет окуляр с 20-кратным увеличением и объектив 4, то он дает увеличение в 80 раз. Современные световые микроскопы могут увеличивать в 1500–3000 раз. Однако для домашней лаборатории вам вполне хватит максимального увеличения до 800 раз.

Итак, перейдем к строению микроскопа.

Окуляр находится в длинной полой трубке, которая называется тубус. При желании вы можете сменить окуляр на более мощный — он легко извлекается из тубуса.

Тубус с окуляром

Вы можете сами выбрать силу увеличения — для этого достаточно всего лишь покрутить диск с объективами до щелчка. Поскольку сила линз указана на оправе, только вам решать, сильнее или слабее делать увеличение.

На другом конце тубуса имеется вращающийся диск, на котором расположены объективы. У современных микроскопов их сразу несколько — два, три и более.

Современные микроскопы оснащены сразу несколькими объективами

Под объективом находится предметный столик. Как понятно из названия, это то самое место, куда необходимо помещать исследуемые объекты. С обеих сторон микроскопа есть два больших винта, они нужны для того, чтобы приближать или отдалять предмет от объектива, — так настраивается резкость. Под предметным столиком вы найдете зеркало, очень важную часть микроскопа. С помощью зеркала свет направляется на объект, лежащий на предметном столике. Так можно настроить яркость. Все элементы микроскопа организуются в единую целостную систему благодаря штативу — крепкой металлической конструкции.

Объект должен лежать так, чтобы прямо через него проходил поток света от зеркала к объективу

В большинство микроскопов встроена лампочка, которая направляет необходимый поток света, так что вам не надо заботиться об освещении. Кроме того, есть бинокулярные микроскопы (с двумя окулярами), которые более удобны, чем монокулярные (с одним окуляром). К тому же первые берегут наше зрение: глаза устают значительно меньше, поскольку нагрузка на них распределяется равномерно.

Более удобным является бинокулярный микроскоп: изображение в нем предстает в более полном виде

Есть микроскопы, в предметные столики которых встроены два маленьких винта — это позволяет плавно передвигать предметный столик с объектом изучения, а не сдвигать его руками во время работы.

Если у вас дома есть компьютер, обзаведитесь цифровым микроскопом. Это даст возможность выводить изображения на экран монитора, раскрашивать, подписывать и сохранять их. Будет здорово, если вам удастся снять видеоизображение и создать свой собственный фильм!

С помощью компьютера и микроскопа можно создавать удивительные фильмы

Составные элементы

Микроскоп, как и любой другой механизм, состоит из определенных деталей, среди которых выделяют:

  • предметный столик;
  • рукоятку переключения;
  • окуляр;
  • тубус;
  • держатель для тубуса;
  • микрометренный винт;
  • винт грубой наводки;
  • зеркальце;
  • подставку;
  • объектив;
  • стойку;
  • бинокулярную насадку;
  • оптическую головку;
  • конденсор;
  • светофильтр;
  • ирисовую диафрагму.

Ознакомимся с основными характеристиками образующих структур микроскопа.

Объектив – является средством определения полезного увеличения. Образуется из определенного количества линз. Увеличительные возможности указываются цифрами на его поверхности.

Окуляр – состоящий из двух-трех линз элемент микроскопа, увеличение которого обозначается на нем цифрам. Общий показатель увеличительных способностей прибора определяется путем перемножения показателя увеличения объектива на увеличение окуляра.

Осветительные устройства включают в себя зеркальце или электроосветитель, конденсор и диафрагмой, светофильтр и столик.

Механическая система образуется подставкой, коробочкой с микрометренным механизмом и винтом, тубусодержателем, винтом грубой наводки, конденсором, винтом перемещения конденсора, револьвером и предметным столиком.

Примеры моделей: микроскопы NIKON

  • Микроскоп Nikon Eclipse Е;
  • Микроскоп Nikon Eclipse Ci;
  • Микроскоп Nikon Ni;
  • Nikon SMZ445/460.
  • Смотреть все модели микроскопов

Современные технологии позволяют проводить лабораторные исследования практически любой сложности. Для выбора оптимального прибора, который способен точно решать поставленные перед лабораторией задачи, необходимо проконсультироваться со специалистами. На рынке производителей микроскопии в мире выделяется несколько основных производителей. Ведущим производителем обоурдования для лаборатоhных исcледований является компаниz Nikon. Оборудование отличается повышенной точность результатов, великолепными и практически неограниченными возможностями. При выборе оборудования, необходимо учитывать и технические характеристики приборов и возможности поддержки производителя по настройке и эксплуатации оборудования.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.