Для чего нужны элементы пельтье? элементы пельтье: принцип работы, характеристики, применение

Алан-э-Дейл       07.05.2022 г.

Как работает модуль

Принцип работы модуля основан на физическом явлении, которое заключается в изменении кинетической энергии электронов. Электрический ток представляет собой поток электронов, движущихся с определенной скоростью.


Перенос тепла между пластинами

При движении по медным полупроводникам от одного до другого эти частицы проходят различные разности потенциалов, что замедляет или ускоряет их, то есть изменяет скорость.

Вам это будет интересно Описание кнопочного поста управления


Мобильный холодильник, в котором есть описываемое устройство

К сведению! При изменении скорости частиц меняется и их кинетическая энергия. Если она меняется в меньшую сторону, то излишки переходят в тепловую энергию, выделяясь на поверхности. На другой пластине в этот момент происходит обратный процесс, требующий возмещения энергии, от чего происходит охлаждение пластины.


Самодельный термогенератор

Благодаря этому термоэлектрический охладитель Пельтье применение нашел во многих областях:

  • как охладитель в переносных холодильных камерах. Он идеален для этого за счет своей компактности и простоты. Но мобильным холодильникам модуль проигрывает в производительности;
  • как генератор электрического тока. При нагревании и охлаждении с разных сторон элемента происходит обратный процесс, он начинает вырабатывать ток. Однако использовать для этого можно только специальные элементы с термостойким припоем внутри;
  • охлаждение процессора. Для этой роли он подходит не очень: при низкой загруженности процессора охладится до точки росы и выпадет конденсат. Это однозначно вызовет поломку;
  • применение в кондиционерах и кулерах. Низкая производительность требует больших затрат энергии для этой работы.


Кулер на основе модулей Пельтье

Потребляемая мощность элемента Пельтье

Элемент Пельтье сам по себе считается очень энергозатратным. Регулировка температуры его сторон достигается напряжением. Чем больше напряжение, тем большую силу тока он потребляет. А чем больше силы тока он потребляет, тем быстрее набирает температуру. Поэтому, можно регулировать холодок, тупо меняя значение напряжения).

Вот некоторые  значения по потреблению электрического тока элементом Пельтье:

При напряжении в 1 Вольт он кушает 0,3 Ампера. Неплохо)

Повышаю напряжение до 3 Вольт

Кушает уже почти 1 Ампер.

Повышаю до 5 Вольт

Чуть больше полтора Ампера.

Даю 12 Вольт, то есть его рабочее напряжение:

Жрет уже почти 4 Ампера! Грабеж).

Давайте грубо посчитаем его мощность. 4х12=48 Ватт. Это даже больше, чем 40 Ваттная лампочка, которая висит у вас в кладовке). Если элемент Пельтье такой прожорливый, целесообразно ли из него делать бытовые холодильники и холодильные камеры? Конечно же нет! Такой холодильник у вас будет жрать Киловатт 10 не меньше! Но зато есть один маленький плюс — он будет абсолютно бесшумен :-). Но если нет никакой возможности, то делают холодильники даже из элементов Пельтье. Это в основном  мини холодильники для автомобилей. Также элемент Пельтье некоторые используют для охлаждения процессора на ПК. Получается  очень эффективно, но по энергозатратам лучше все-таки ставить старый добрый вентилятор.

Где ещё применяют термоэлектрические модули

Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.

Основное применения теплоэлектрических модулей:

  1. Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
  2. Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
  3. Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).

И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.

Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.

Цена вопроса

Для эффективной работы необходимо поддерживать на керамических пластинах элемента Пельтье значительную разность температур, что достигается большими затратами потребляемой мощности в процессе работы. В ходе испытания элемента ТЕС1-12706 при номинальном напряжении 12 В ток составил почти 4 А. Потребляемая мощность 12 В х 4 А = 48 Вт. А если взять 4, 6, 10 термормодулей?  При крайне низком значение их кпд на единицу перекачиваемой энергии затраты почти вдвое больше потребляемой энергии. Поэтому обогрев даже небольшого помещения потребует немалых затрат.

Таким образом, собрать эффективную систему из современных элементов Пельтье для обогрева помещения — занятие бесперспективное.

Как говорилось выше, запись фильма осуществлена в 2013 году. Сейчас начало 2017 года, а результатов опытов использования термомодулей для обогрева помещения в строящемся поселке под Одессой автор так и не предоставил. После просмотра фильма возникает законный вопрос, а чем же разработанные ВПК термомодули отличаются от китайских элементов Пельтье? Насторожил еще один момент, где Кондрашов А. А. предлагает купить секрет всего за 20 млн. «правильных» рублей. Увы, изобретатель исчез, наверное, вместе с деньгами еще одного доверчивого покупателя. Жаль, что человечеству так и осталась недоступной тайна, сулившая головную боль системе ЖКХ.

Post Views:6 577

Холодильник своими руками

Эффект Пельтье применяется при создании портативных холодильников. Модуль можно купить за 300-500 руб., а радиатор с вентилятором берется от старого компьютера. В качестве контейнера можно использовать любую пластиковую, фанерную или металлическую емкости, оклеенные снаружи и изнутри теплоизолирующими пластинами (пенопласт, пеноплекс и т. п.) с отражающими слоями из алюминиевой фольги.

Модуль Пельтье удобней встраивать в крышку, но можно и в стенку корпуса. Если он располагается в верхней части емкости, холод перемещается вниз, обеспечивая равномерную температуру внутри.

Изнутри к модулю приклеивается на термопасту радиатор, который также крепится к крышке. Можно приклеить два модуля друг к другу, но при этом нельзя путать полярность. Горячая сторона нижнего элемента должна контактировать с холодной верхнего. Эффективность охлаждения при этом увеличится.

Снаружи к модулю приклеивается радиатор с вентилятором от кулера компьютера, а также дополнительно крепится к крышке саморезами или винтами. Крепеж с горячей и холодной сторон должен быть друг от друга изолирован, а шляпки залиты термоклеем.

Важно! Затяжку крепежа радиаторов нужно делать аккуратно, чтобы не треснули керамические пластины модулей. Изнутри на крышку устанавливается теплоизолирующая прокладка

Чтобы улучшить теплоизоляцию, элементы с торцов закрываются рамкой из теплоизола

Изнутри на крышку устанавливается теплоизолирующая прокладка. Чтобы улучшить теплоизоляцию, элементы с торцов закрываются рамкой из теплоизола.

Электрика подключается к блоку питания.

Элемент пельтье своими руками

Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.

Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:

  1. Компактность, удобство установки на самодельное электронное плато.
  2. Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
  3. Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.

Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.

Рассмотрим на примере схем, как сделать пельтье своими руками:

  • Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
  • Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).

Рисунок 1. Элемент пельтье своими руками: универсальная схема

Далее стоит следовать простой инструкции, как сделать пельтье своими руками:

  1. Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
  2. При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
  3. Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.

Описание технологии и принцип действия

Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.

Рисунок 2. Принцип действия элемента

При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).

При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.

Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:

  1. Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
  2. При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
  3. При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
  4. Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.

Технические характеристики элемента пельтье

Компонент получил широкое применение в различных холодильных схемах.

Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:

  1. Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
  2. Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
  3. Абсолютно бесшумен — в процессе работы не издает никаких посторонних и интенсивных звуков.
  4. Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.

Холодильник из модуля Пельтье

Элемент Пельтье для охлаждения процессора эффективнее стандартных элементов. При этом последние остаются, но применяются только для вывода тепла из замкнутого пространства компьютера.

При их конструировании в качестве охладителя электронных средств нужно учитывать следующие особенности.

  1. Мощность напрямую связана с размерами модуля. Небольшие устройства не создадут требуемый уровень охлаждения. Например, они не обеспечат нормальный температурный режим процессора. Слишком мощный модуль вызывает появление влаги, являющейся причиной коротких замыканий в электронике, поскольку расстояния между токопроводящими элементами на печатных платах незначительны.
  2. Модули Пельтье сами нуждаются в охлаждении с помощью вентиляторов и радиаторов, поскольку они выделяют много тепла. Это необходимо для снижения температуры в замкнутом пространстве компьютера и нормализации условий работы других элементов.
  3. Модуль Пельтье является дополнительной нагрузкой в блоке питания.
  4. Холодильник после выхода из строя является изолятором между радиатором и охлаждаемым элементом, что может привести к быстрому выходу последнего из строя от перегрева.
  5. Современные процессоры могут изменять потребление энергии при работе, что благоприятно влияет на тепловой баланс, но не всегда при применении модулей Пельтье. Простейшие холодильники рассчитаны на непрерывную работу, и их не рекомендуется использовать вместе с программами охлаждения.

Принцип работы элемента Пельтье

Любой термоэлектрический модуль работает на разности электронной энергии, то есть один проводник — область, где есть высокая проводимость, а второй — место, где низкая проводимость. Если соединить такие источники вместе и пропустить через них заряд, то электрону для прохождения низкоэнергетической области в высокую, нужно подкопить электроэнергии. Та область, где осуществляется энергопоглощение электроном, охлаждается.


Принцип работы

Важно! При изменении полярности подключения элемента вместо охлаждения будет происходить нагревание. Данный эффект наблюдается у любого элемента, но конкретные следы элемента Пельтье будут видны на полупроводниках

Технические характеристики элемента Пельтье

Термические электрические модули обладают следующими характеристиками:

  • производительность холода;
  • максимальный температурный перепад;
  • допустимая сила тока, которая нужна, чтобы обеспечить максимальный температурный перепад;
  • предельное напряжение в киловаттах, которое необходимо току для достижения пиковой разницы;
  • внутренний показатель сопротивления модуля resestance, указываемый в Омах;
  • коэффициент эффективности или КПД устройства, которое показывает отношения охлаждения к мощности.

Вам это будет интересно Монтаж электросчетчика


Усредненные технические характеристики

Обратите внимание! Подобные характеристики распространяются и на миниатюрные установки, малые электрогенераторы, холодильные системы охлаждения персональных компьютеров, охлаждающие/нагревающие водные кулеры и осушители воздуха

Практический опыт с элементом Пельтье

Выглядеть он может по-разному, но основной его вид — это прямоугольная или квадратная площадка с двумя выводами.  Сразу же отметил сторону «А» и сторону «Б» для дальнейших экспериментов

Почему я пометил стороны?

Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так… Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание «разности температур»? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.

Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать мультиметр, который шел в комплекте с термопарой

Сейчас он показывает комнатную температуру. Да, у меня тепло ;-).

Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный — на минус и подаем чуток напряжения, вольта два-три. Я узнал, что у меня сторона «А» охлаждается, а сторона «Б» греется, пощупав их рукой. Если перепутать полярность, ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.

Итак, номинальное (нормальное) напряжение для работы элемента Пельтье — это 12 Вольт. Так как  я подключил на красный  — плюс, а на черный — минус, то у меня сторона Б греется. Давайте замеряем ее температуру.  Подаем напряжение 12 Вольт и смотрим на показания мультиметра:

77 градусов по Цельсию — это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.

Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор. Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который  дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.

Подаем 12 Вольт и замеряем температуру стороны А:

7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.

Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример — это фонарик, работающий от тепла руки

Технические характеристики

Технические параметры элемента Пельтье предполагают такие значения:

  • холодопроизводительность (Qmax) – рассчитывается на базе предельного тока и разницы температурного режима между концами модуля. Единица измерения – Ватт;
  • предельная температурная разница (DTmax) – измеряется в градусах, данная характеристика приводится для оптимальных условий;
  • Imax – предельная сила электротока, требуемая для обеспечения большей разницы температуры;
  • предельное напряжение Umax, которое требуется для электротока Imax для достижения максимальной температурной разницы DTmax;
  • Resistance – внутреннее сопротивление устройства, измеряется в Омах;
  • СОР – коэффициент эффективности или КПД модуля Пельтье, который отражает соотношение охлаждающей и потребляемой мощностей. В зависимости от особенностей устройства, для недорогих устройств показатель находится в пределах 0,3-0,35, для более дорогих моделей он варьируется до 0,5.

Преимуществами мобильного элемента Пельтье являются небольшие габариты, обратимость процесса, а также возможность использования в качестве переносного электрогенератора или холодильника.

Недостатками модуля являются дороговизна, невысокий КПД в рамках 3%, большие затраты электроэнергии и необходимость постоянного поддержания разницы температурных режимов.

Watch this video on YouTube

Элемент Пельтье для автомобильного охладителя

Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.

Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой «ПР20». Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.

Изготовление кондиционера на элементах Пельтье

У нас будет довольно мощная модель, состоящая из 6 элементов размером 40х40 каждый. Под них необходимо подобрать два массивных радиатора, для обжатия элементов с обеих сторон. Я буду использовать один большой и два маленьких.

Примерно так они будут выглядеть при совмещении.

Из ДСП необходимо вырезать прямоугольник.

В котором сделать ещё прямоугольник под два радиатора, чтобы они плотно входили в него.

С обратной стороны.

Это будет разделительный барьер — холодной стороны от горячей.

Чтобы радиаторы не проскакивали в отверстие, нужно приклеить сбоку по две полосы из алюминиевого профиля. Купить его не составит труда в строительном магазине.

Разводим двухкомпонентный клей на основе эпоксидной смолы (холодная сварка). И склеиваем сначала два радиатора меду собой, а потом уже к ним приклеиваем кусочки профиля.

К большому радиатору также приклеиваем профиль. Вот так все выглядит. Стороны профиля по обе стороны должны находится примерно в онной плоскости.

Сверлим этот бутерброд насквозь: две планки на обеих сторонах вместе с ДСП.

Далее смазываем радиаторы теплопроводящей пастой и устанавливаем подряд элементы. Стороны не путаем, все модули должны смотреть в дну сторону.

Покрываем их сверху новым слоем теплопроводящей пасты.

И прижимаем вторым радиатором. Стягиваем все аккуратно винтами с гайками.

Получилась вот такая конструкция с 12-ю выводами.

Для удобства подключения используем клеммную колодку.

Как вы возможно обратили внимание — трехконтактную. И все модули в ней подключены общим к нижней шине

А красными выводами 3 элемента к верхнему контакту, а три других к среднему. Такое деление сделано специально для нашего блока питания компьютера, который имеет две шины по 12 В и никак не обязательно.

В ДСП просверлим отверстие под провод и подключим его к колодке.

К радиаторам с обеих сторон прикрутим вентиляторы.

На блоке питание собирается так же воедино минусовые провода и плюсовые по два канала.

Подключаем к выходу также через соединительную колодку.

Все, почти готово.

Для запуска блока, в нашем случае, необходимо перемычкой закоротить выходы выключателя.

Alex_EXE

В прошлых статьях было рассказано об элементах пельтье и как они себя ведут в режиме теплового насоса. В этой, заключительной статье, расскажу вам о том, что эти модули не только способны прилично кушая электричество обеспечивать разность температур на своих сторонах, но и сами способны вырабатывать электроэнергию, если одну сторону элемента принудительно охлаждать, а вторую нагревать.

Без нагрузки, перепад температур ~100°С

В этих испытаниях добровольцем выступил небольшой модуль TB109-0.6-0.8, с площадью поверхности всего 3,12кв.см., напомню вам его ро.., вид и характеристики:

TB109-0.6-0.8

Imax = 2,1А Umax = 13,4В dTmax = 68К Qmax = 16,9Вт R = 5Ом t рабочая -50 +80 °C t max = 130°C t плавления припоя = 139°C Размеры 26х12мм

Для испытаний пельтье в режиме электрогенератора был собран небольшой стенд, который содержит следующие приборы: нагреватель, вольтметр, амперметр и нагрузку, так же понадобился радиатор и кусочек льда в водонепропускаемом пакете, ну и конечно сам подопытный TB109-0.6-0.8. В качестве нагревателя выступил 20Вт резистор на 5,6Ом, который был разогрет примерно до 80-90 градусов. Для улучшения теплового контакта элемента пельтье с нагревателем была применена намакондовская термопроводящая прокладка, вытащенная из какого то отмучавшегося компьютерного блока питания.

Собранный испытательный стенд

Приступим к тестам.

Первый тест был проведён с 1Омной нагрузкой, подключенной к выводам пельтье, в качестве охладителя был использован радиатор комнатной температуры.

Нагрузка 1Ом, перепад температур ~60°С

С модуля удалось получить 0,117В при токе 119,5мА или 14мВт, при разности температур примерно в 60 градусов.

Дальше было решено охлаждать подопытного более кардинальными мерами, для этого в дело пошли кусочки льда из морозильника.

Нагрузка 1Ом, перепад температур ~100°С

При разности температур в 100 градусов модуль выдал результаты получше, а именно: 0,21В 0,22А или 46мВт.

Следующий тест был проведен с нагрузкой в 20Ом.

Нагрузка 20Ом, перепад температур ~100°С

Модуль выдал 1,31В при токе 66мА или 86мВт.

На холостом ходу, первое фото, модуль выдал 2,19В.

Вывод – модули пельтье можно с успехом использовать для генерации электричества. Если модуль в 109 термопар, площадью 3,12кв.см. при разности температур в 100 градусов смог выдать 86мВт при полутора вольтах и более 2-х В на холостом ходу, то модуль с гораздо большей площадью и разностью температур хватит на питания небольшого светодиодного осветителя или радиоприёмника, или же для зарядки аккумуляторов. Но, к сожалению, такое их применение сильно ограничивается их ценой.

Примеры применения: различные ТЭГи, от портативных туристических, которые можно прикрепить к котелку у костра и слушать радио, до РИТЭГов, которые применяются для питания удалённых труднодоступных автономных объектов (например – маяки) или на космических спутниках.

Благодарность за предоставленные модули фирме – Радиоэлектроника.

Принцип работы элемента Пельтье для непрофессионалов

Элемент Пельтье – термическая пара, которая представляет собой 2 проводника р и n, с последовательным соединением между собой. При протекании электрического тока через установленные элементы, тепло на контакте n-p поглощается, а на контакте p-n – образовывается. В результате физического явления на примыкающем участке температура будет снижаться, а противоположный элемент, соответственно, будет повышать свои температурные показатели. При изменении полярности тока изменяется функциональность участков: место нагрева будет охлаждаться, а противоположная сторона – нагреваться. Для использования на практике элемента установки одной термопары недостаточно. Чем мощнее термоэлектрический модуль, тем больше в нем установлено термопар.

Достоинства

  • Компактные размеры устройства.
  • Отсутствие движущихся механизмов в конструкции.
  • Отсутствие газа и жидкости.
  • Бесшумность.
  • Наличие регулировки мощности охлаждающего процесса.
  • Возможность выполнять термостатирование при разных показателях температуры окружающей среды.

Осушитель своими руками

Недостатки

  • Незначительный КПД.
  • Потребность использования электросети.
  • Ограниченное количество включений и отключений.
  • Большие затраты при использовании мощного модуля.

Сферы использования

  • В холодильных установках бытового характера.
  • В процессе охлаждения электроники.
  • В генераторах, основанных на термоэлектрическом принцип.
Гость форума
От: admin

Эта тема закрыта для публикации ответов.