Подошва из материала тэп

Алан-э-Дейл       31.05.2022 г.

Оглавление

Минусы

Поговаривают, что при очень низких и высоких температурах термоэластопласт теряет свои свойства. Вот почему его редко используют в производстве спецобуви.

Таким образом, подошвы из ТЭП – оптимальное решение для повседневной обуви. Они отличаются эластичностью, износостойкостью, устойчивостью к морозам, небольшим весом и, что самое главное, доступностью. ТЭП-подошва защитит ноги от холода и влаги, сделает прогулки на свежем воздухе комфортными и приятными.

  • Ортопедические стельки при плоскостопии
  • Рефлективные кроссовки
  • Подошва ЭВА скользит или нет

Часто эти названия мы встречаем на бирках и этикетках. А вот что они означают – известно далеко не всем.

Часто эти названия мы встречаем на бирках и этикетках. А вот что они означают – известно далеко не всем.

Для чего это необходимо знать?

Характеристики обуви напрямую зависят от материалов, из которых она сделана. Например, промокает ли обувь? В какое время года ее можно носить? Как правильно сушить? Где хранить?

А поскольку практически вся обувь делается с использованием этих четырех материалов – ПВХ, ЭВА, ТЭП и ПУ – знать, что стоит за этими аббревиатурами просто необходимо.

Но прежде, один важный момент.

Все эти материалы могут присутствовать в обуви по-разному:

1. Обувь делается полностью из этих материалов (их еще называют «полимеры»). Например, сапоги или галоши.

2. Материалы используются только для изготовления нижней части – например, галошки в сноубутсах.

3. Материалы используются только для изготовления подошвы. Например, в ботинках или сандаликах.

И каждый раз выбор того или иного материала имеет под собой основание.

Итак, давайте разбираться, что же такое – ПВХ, ЭВА, ТЭП и ПУ.

Виды резины и их применение

В зависимости  от структуры резину делят на непористую (монолитную) и пористую.

Непористую резину изготовляют на основе бутадиенового каучука. Она отличается высоким сопротивлением истиранию. Срок износа подошвенной резины в 2—3 раза превышает срок износа подошвенной кожи. Предел прочности резины при растяжении меньше, чем натуральной кожи, но относительное удлинение при разрыве во много раз превышает удлинение натуральной подошвенной кожи. Резина не пропускает воду и практически в ней не набухает.

Резина уступает коже по морозостойкости и теплопроводности, что снижает теплозащитные свойства обуви. И, наконец, резина является абсолютно воздухо- и паронепроницаемой. Непористая резина бывает подошвенная,  кожеподобная, и транспарентная. Обычную непористую резину применяют для изготовления формованных подошв, накладок, каблуков, полукаблуков, набоек и других деталей низа обуви.

Пористые резины применяют в качестве подошв и платформ для весенне-осенней и зимней обуви.

Кожеподобная резина — это резина для низа обуви, изготовленная на основе каучука с  высоким содержанием стирола (до 85%). Повышенное содержание стирола придаёт резинам твёрдость, вследствие чего возможно снижение их толщины до 2,5—4,0 мм при сохранении хороших защитных функций. Эксплуатационные свойства кожеподобной резины сходны со свойствами натуральной кожи. Она обладает высокой твёрдостью и пластичностью, что позволяет создавать след обуви любой  формы. Кожеподобная резина хорошо окрашивается при отделке обуви. Она имеет высокую износостойкость благодаря хорошему сопротивлению истиранию и устойчивости к многократным изгибам.

Срок носки обуви с подошвой из кожеподобной резины составляет 179—252 дня при отсутствии выкрашивания в носовой части. Недостатком этой резины являются невысокие гигиенические свойства: высокая теплопроводность и отсутствие гигроскопичности и воздухонепроницаемости.

Кожеподобную резину выпускают трёх разновидностей: непористой  структуры  с плотностью  1,28 г/см3, пористой структуры, имеющую плотность 0,8-0,95 г/см3, и пористой структуры с волокнистым наполнителем, плотность которых не выше 1,15 г/см3. Пористые резины с волокнистыми  наполнителями называются «кожволон». Эти резины по внешнему виду сходны с натуральной кожей. Благодаря волокнистому наполнителю повышаются их теплозащитные свойства, они отличаются лёгкостью, эластичностью, хорошим внешним  видом. Кожеподобные резины применяют в качестве подошвы и каблука при  изготовлении летней и весенне-осенней обуви клеевого метода крепления.

Транспарентная резина — это полупрозрачный материал с высоким содержанием натурального каучука. Отличается высоким сопротивлением истиранию и твёрдостью, по износостойкости превосходит все виды резин. Транспарентные резины выпускают в виде формованных подошв (вместе с каблуками), с глубоким рифлением на ходовой стороне. Разновидностью транспорентной резины является стиронип, который содержит большее количество каучука. Сопротивление многократному изгибу у стиронипа в три с лишним раза выше, чем у обычных непористых резин. Стиронип применяется при изготовлении обуви клеевого метода крепления.

Резина пористой структуры имеет замкнутые поры, объём которых в  зависимости от вида резины колеблется от 20 до 80 % её общего объёма. Эти резины имеют ряд преимуществ по сравнению с непористыми резинами: повышенные мягкость, гибкость, высокие амортизационные свойства, упругость. Недостатком пористых резин является способность давать усадку, а также выкрашиваться в носочной части при ударах. Для повышения твёрдости  пористых резин в их состав вводят полистирольные смолы.

В настоящее время освоено производство новых видов пористых резин: порокрепа и вулканита. Порокреп отличается красивым цветом, эластичностью, повышенной прочностью. Вулканит — пористая резина с волокнистыми наполнителями, обладающая высокой износостойкостью, хорошей теплозащитностью. Пористые резины применяют в качестве подошв для весенне-осенней и зимней обуви.

Описание

Термоэластопласты представляют собой двухфазные термопластичные композиции получаемые путем гомогенизации фазы полиолефинов и их сополимеров и эластомерной фазы, с введением стабилизаторов и добавок, с последующей переработкой методом экструзии

Термоэластопласты предназначены для изготовления элементов конструкции кабелей (изоляция, оболочка,), а также применения в других областях промышленности (строительной, автомобильной, обувной, электротехнической и прочих).

Композиции термоэластопластов предназначены для изготовления материалов эксплуатирующихся в диапазоне температур от минус 40 до плюс700С.

Композиции термоэластопластов, изготавливаемые по настоящим ТУ, имеют индивидуальные названия, состоящие из букв и цифр, например: И-ТЭП (ПХ) 01, О-ТЭП (ПХ) 01, ОН-ТЭП (ПХ) 01, где:

  • И, О, ОН — указание на тип композиции (И — изоляционный, О — для оболочек, ОН — общего назначения)
  • ТЭП — указание на свойство термоэластопластичности
  • (ПХ) — указание фирмы изготовителя — ООО «ПОЛИМЕРХОЛДИНГ»
  • 01 — цифра следующая за указанием фирмы изготовителя определяет номер основы для  рецептуры (01 — на основе полиэтилена)

— обозначение настоящих технических условий.

После обозначения марки композиции при наличии разновидностей по цвету, имеется соответствующее указание на цвет, например, – неокрашенный, прозрачный, белый, черный и другие.

Пример условного обозначения:

И-ТЭП (ПХ) 01, белый, ТУ 20.16.59-004-68232265-2017

Композиция термоэластопласта для изготовления изоляции кабелей и проводов, произведенная

ООО «ПОЛИМЕРХОЛДИНГ», рецептура на основе полиэтилена, цвет белый, ТУ.

Резины специального назначения

Специальные резины подразделяют на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола.Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2==ССI—СН=СН2.
Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние.
Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.)
По температуроустойчивости и морозостойкости (от —35 до —40 °С) они уступают как НК, так и другим СК.
Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполярных каучуков.
(За рубежом полихлоропреновый каучук выпускается под названием неопрен,
пербунан-С и др.).

СКН — бутадиеннитрильный каучук — продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты —СН2—СН =СН—СН2—СН2—СНСN—
Резины на основе СКН обладают высокой прочностью ((в = 35 МПа), хорошо сопротивляются истиранию, но по
эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Резины могут работать в среде бензина, топлива, масел в интервале температур от -30 до 130 °С.
Резины на основе СКН применяют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки,манжеты и т. п.).Тиоколы – торговое название полисульфидных каучуков.
Из смеси каучука с серой, наполнителями и другими веществами формуют нужные изделия и подвергают их нагреванию. При этих условиях атомы серы присоединяются к двойным связям макромолекул каучука и «сшивают» их, образуя дисульфидные «мостики». В результате образуется гигантская молекула, имеющая три измерения в пространстве — как бы длину, ширину и толщину. Полимер приобретает пространственную структуру. Если к каучуку добавить больше серы, чем нужно для образования резины, то при вулканизации линейные молекулы окажутся «сшитыми» в очень многих местах, и материал утратит эластичность, станет твёрдым — получится эбонит. До появления современных пластмасс эбонит считался одним из лучших изоляторов.

Полисульфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

…—СН2—СН2—S2—S2— …
Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол — хороший герметизирующий материал.

Механические свойства резины на основе тиокола невысокие.
Эластичность резин сохраняется при температуре от —40 до —60 °С.
Теплостойкость не превышает 60—70 °С. Тиоколы новых марок работают при температуре до 130 °С.Акрилатные каучуки — сополимеры эфиров акриловой (или метакриловой)кислоты с акрилонитрилом и другими полярными мономерами — можно отнести к маслобензостойким каучукам.
Каучуки выпускают марок БАК-12, БАКХ-7, ЭАХ.
Для получения высокопрочных резин вводят усиливающие наполнители.
Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении.Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам.
Недостатками БАК являются малая эластичность,низкая морозостойкость, невысокая стойкость к воздействию ; горячей воды и
пара.

Износостойкие резины получают на основе полиуретановых каучуков СКУ.
Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10—20 раз выше, чем газопроницаемость НК.
Рабочие температуры резин на его основе составляют от —30 до 130°С.

Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков — , вулколлан, адипрен, джентан, урепан.
Резины на основе СКУ применяют для автомобильных шин, конвейерных лент, обкладки труб
и желобов для транспортирования абразивных материалов, обуви и др.

Всё о подошве.

Резиновая подошва — подошва, изготовленная из резины. По данным на ., сегодня до 30% всех обувных подошв в мировом производстве обуви изготавливается из резины. Наряду со своими великолепными свойствами основным недостатком всех обувных резин является как многокомпонентность состава резиновой подошвы, так и большое число производственных операций резинового производства.
Полимерная подошва — общее название класса подошв, основой материала которых являются те или иные полимеры.
Обувную промышленность заинтересовали следующие свойства полимерных материалов:
— хорошая термостойкость при воздействии высоких температур и эластичность при низких температурах;
— стойкость к воздействию микроорганизмов, растворителей, щелочей, кислот, радиации, света, озона;
— высокая остаточная прочность при многократном изгибе и сопротивление разрыву;
— высокая степень электроизоляции.
Подбирая рецептуру на основе полимеров, можно получать материал для обувной подошвы со свойствами, которые в оптимальной мере отвечают поставленным задачам.

Из полимерных материалов можно изготовить даже очень тонкую подошву, а различные вставки позволяют сделать её многоцветной, что очень важно для современной обуви. При этом дизайнеры имеют максимальную степень свободы в оформлении профиля подошв для создания разнообразной и разнопрофильной обуви

ПВХ-подошваsans-serif- высокая остаточная прочность при многократном изгибе и сопротивление разрыву;
— высокая степень электроизоляции.
Подбирая рецептуру на основе полимеров, можно получать материал для обувной подошвы со свойствами, которые в оптимальной мере отвечают поставленным задачам.

Из полимерных материалов можно изготовить даже очень тонкую подошву, а различные вставки позволяют сделать её многоцветной, что очень важно для современной обуви. При этом дизайнеры имеют максимальную степень свободы в оформлении

 — распространённый вид подошвы, изготовленной из поливинилхлорида.
Введение пластификаторов в ПВХ позволяет повысить морозостойкость полимерной композиции. Чем больше содержание пластификаторов, тем выше эластичность и морозостойкость, но ниже прочность. Пластификаторами ПВХ-композиций для низа обуви являются сложные эфиры фталиевой и себациновой кислот. Так как пластификаторы ослабляют межмолекулярное взаимодействие в зоне клеевого шва, то не допускается применение наиритового клея. При использовании ПВХ-подошв необходимо нанесение на затяжную кромку обуви полиуретанового клея.
Вместе с тем ПВХ-подошвы считаются низкоэластичными и неморозостойкоми.
ТЭП-подошва — подошва обуви, изготовленная из термопластичной резины; принципиально новый (.) материал для обувной подошвы.
Синоним: термоэластопласт-подошва.
ТЭП сочетают в себе эластичные свойства каучуков (способность к высокоэластическим деформациям и высокая морозостойкость) и термопластические свойства термопластов (высокая текучесть в расплавленном состоянии и способность перерабатываться литьевым способом).
Термоэластопластичные подошвы лишены недостатков резиновых подошв, низкой эластичности и морозостойкости ПВХ-подошв.
Уникальные физико-механические свойства ТЭП обусловлены их строением.
ТЭП-подошва представляет собой интегральную структуру: наружные слои подошвы монолитные, а внутренние, в объёме изделия, — пористые. 
В отличие от пористых подошв из резины твёрдость и истираемость ТЭП-подошв не зависит от плотности, благодаря наличию монолитного наружного слоя.
ТЭП-подошва отличается высокой морозоустойчивостью (- 50 °С). По показателям истираемости значительно превосходит многие термопласты, некоторые резины.
ТЭП-подошвы обладают высоким коэффициентом трения по асфальту, мокрым дорогам и снегу, что снижает травматизм в зимнее время.
Недостатком ТЭП-подошвы является сравнительно небольшая термостойкость.
Полиуретановая подошва — подошва, изготовленная на основе полиуретана.
Синоним: ПУ-подошва.

Особенности настроек 3D печати гибкими TPU и TPE пластиками

3D печать TPE пластиками

Печать TPE пластиками может вызывать проблемы из-за эластичности. Рекомендуется печатать со следующими настройками:

  • Температура экструдера: 210 ºC — 260 ºC
  • Температура стола: без подогрева — 110 ºC
  • Скорость 3D печати: 5-30 мм/с
  • Если 3D печать идет слишком быстро, это может привести к застреванию. TPE лучше работает с экструдером с прямым приводом, поэтому будьте особенно осторожны, если у вас экструдер типа Bowden.

Цены некоторых популярных марок TPE материалов: eSun TPE (около 42 долларов США / кг), MatterHackers Pro Series TPE (около 55 долларов США / 0,5 кг) и 3DXFlex TPE (около 68 долларов США / 0,5 кг).

3D печать TPU пластиками

Хорошей новость — печатать TPU пластиками легче, чем TPE, потому что он относительно жесткий. Но по сравнению с жесткими материалами, такими как PLA, 3D печать TPU пластиками все же сложнее. Рекомендуется печатать со следующими настройками:

Температура экструдера: 210 ºC — 230 ºC
Температура стола: без подогрева — 60 ºC
Скорость 3D печати: 5-30 мм/с
Очень важно снизить скорость экструзии и ретракта, чтобы оптимизировать процесс 3D печати.

Цены некоторых популярные марок TPU материалов: Kodak Flex TPU (около 50 долларов США / 0,75 кг), Ultimaker TPU (около 70 долларов США / 0,75 кг), TPU серии MatterHackers Build (около 45 долларов США / кг), Polymaker PolyFlex (около 55 долларов США / 0,75 кг) и, один из самых популярных, NinjaTek (около 55 долларов за 0,5 кг).

Что представляют собой ТЭП-подошвы

Тэрмоэластопласт сочетает в себе термопластические свойства термопластов (может перерабатываться литьевым способом, обладает высокой текучестью в расплавленном состоянии) и эластичные свойства каучуков (высокая морозостойкость и способность к высокоэластическим деформациям). ТЭП-подошвы лишены недостатков подошв из ПВХ из резины, что делает их очень популярными.

Уникальные физико-механические свойства термоэластопласта обусловлены его строением. Подошва, изготовленная из этого материала, имеет несколько слоев: наружные являются монолитными, а внутренние – пористыми. Благодаря наличию наружного монолитного слоя, истираемость ТЭП-подошв от их плотности не зависит. Этим они выгодно отличаются от пористых резиновых подошв.

Рисунок протектора

Это второй по списку фактор безопасности. Идея использования протектора на обуви пришла из области машиностроения, если говорить точнее – за основу взяты технологии производства автомобильных шин. Глубина и рисунок подошвенной части обеспечивают лучшее сцепление со скользкой поверхностью. Выбор протектора сводится к следующим нюансам:

  1. Чем глубже рисунок, тем устойчивее обувь, что особенно чувствуется при ходьбе по ледяной или снежной каше в период оттепели. Четкого стандарта здесь нет, но лучшим сцеплением обладают протекторы глубиной от 5-8 мм.
  2. Асимметричный рисунок с разнонаправленными бороздками обеспечивает лучшую сцепку с дорожной поверхностью. Если канавки протектора будут прорисованы в одном направлении, нога станет скользить в ту же сторону. Разнонаправленность уравновешивает этот процесс, обеспечивая устойчивость.
  3. Чем больше отдельных элементов узора, тем лучше сцепка. Бороздки прорезаются под острым углом, что усиливает проникновение в рыхлую поверхность, к примеру, снег или ледяное крошево.
  4. Устойчивость увеличивают также различные конструктивные элементы вроде шипов или откидной планки с металлическими зубьями. Но эти разработки применяются для производства специализированной обуви для спорта или военного обмундирования.

С шипамиДостаточная глубина протектораРазнонаправленность рисунка

Каучук синтетический

Каучуками называют натуральные или синтетические полимеры, обладающие высокими эластичными свойствами в процессе эксплуатации. Каучуки могут растягиваться до размеров, многократно превышающих их первоначальную длину.

Каучуки эластичны и водонепроницаемы. Они не проводят электрический ток, что позволяет применять их в качестве изолирующих материалов. Они не растворяются в воде, хорошо растворимы в бензине, бензоле, эфире и других летучих жидкостях. Из них получают резины и эбониты.

История открытия каучуков

Название «каучук» произошло от слова «каучу» (кау- дерево, учу – течь). Так индейцы называли сок гевеи. Это дерево, растущее на берегах Амазонки. Белый сок этого дерева темнел и становился твёрдым на воздухе. Индейцы делали из него обувь, непромокаемые ткани, сосуды для воды и другие предметы обихода.

Но изделия из этой ткани твердели и трескались на холоде, а летом превращалась в липкую смесь с неприятным запахом.

В 1839 г. американец Чарльз Нельсон Гудьир, добавив в каучук немного серы и, нагрев эту смесь, изобрёл новый материал с повышенной прочностью, эластичностью, устойчивый к нагреванию и к холоду. Именно этот материал называют сейчас резиной, а процесс его получения – вулканизацией. С этого времени изделия из резины завоевали весь мир.

Синтетический каучук

С изобретением автомобильных шин потребность в резине выросла настолько, что природного сырья стало не хватать для производства каучука. И вопросом получения синтетического каучука занялись учёные.

В 1879 г. французский химик Г.Бушарда, обработав вещество изопрен соляной кислотой, получил каучукоподобное вещество. А в 1901 г. русский химик  И. Кондаков создал эластичный полимер из диметилбутадиена. В 1910 г. впервые был получен синтетический полибутадиеновый (дивиниловый) каучук по методу русского учёного-химика Сергея Васильевича Лебедева. Началось промышленное производство каучука.

Типы синтетических каучуков

Современная промышленность производит синтетические каучуки.  Кроме бутадиенового каучука, полученного С.В. Лебедевым, выпускаются и другие виды синтетических каучуков, по своим свойствам превосходящие натуральные каучуки.

Синтетические каучуки получают полимеризацией. В процессе полимеризации макромолекула полимера образуется путём присоединения молекул мономеров. Абсолютно все каучуки имеют большую длину молекул полимеров.

Изопреновый каучук получают полимеризацией изопрена.

nСН2=С(СН3)-СН=СН2 → (-СН2-С(СН3)=СН-СН2-)n

Натуральный каучук также является изопреновым каучуком. Поэтому синтетический изопреновый каучук, как и натуральный,  обладает высокой эластичностью и прочностью. Применяют его в производстве шин, обуви, конвейерных лент, медицинских изделий.

Бутадиеновый каучук получают  полимеризацией бутадиена. Этот каучук обладают высокой износоустойчивостью. Он широко используется при изготовлении шин.

Бутан-стирольный каучук получается в результате сополимеризации (полимеризации с участием двух мономеров) бутадиена 1,3 и стирола. Применяется для производства шин, резиновой обуви  и других резиновых изделий высокого качества.

Бутадиен-нитрильный каучук. Этот каучук получают полимеризацией бутадиена с акрилонитрилом. Он обладает высокой масло- и бензостойкостью. Применяется в производстве сальников.

Винилпиридиновый каучук создаётся полимеризацией винилпиридина с диеновыми углеводородами. Он имеет отличную склеиваемость. И резины из него получаются морозоустойчивые, маслостойкие и бензостойкие.

Фторсодержащие каучуки — результат полимеризации фторорганичеких соединений, в состав которых входит хотя бы один атом фтора, непосредственно соединённый с углеродом. Эти каучуки характеризуются повышенной термостойкостью. Поэтому их применяют для изготовления герметиков и уплотнителей, работающих при температурах выше 200оС.

Синтетические каучуки получили широкое распространение во многих отраслях современной промышленности. Каучуки являются основой резиновых смесей, из которых вулканизацией получают резину. А из резины выпускают несколько десятков тысяч разнообразных изделий, применяемых  в самых различных отраслях промышленности, транспорта, сельского хозяйства, а также в быту.

Основные отличия резины и каучука

Каучук – полимер, который можно получать двумя способами – добывать из «недр природы», синтезировать из более простых соединений.

Резина – только синтетический полимер. Резина применятся в достаточно широком диапазоне температур в то время, как каучук разрушается при нагревании и охлаждении. Резина – гибкий материал. Она легко деформируется и быстро возвращается в исходную форму.

Каучук окисляется кислородом воздуха, поэтому быстро «стареет». Резина же выпускается с заданными свойствами, она не боиться кислорода воздуха, более того есть соединения, стойкие к действию сильных окислителей.

Таким образом, резина и каучук, это своего рода «резиновая пищевая цепочка». Каучук дает природа, его добывают люди и делают резину, а из резины производят для жителей планеты обувь, шины, коврики и еще много-много полезных вещей. Попробуйте убрать из нашей жизни одни только автомобильные шины, и мир встанет в транспортном коллапсе.

Подводя итоге, нельзя сказать, что резина лучше, чем каучук, что она прочнее и эластичнее. Да, она обладает лучшими свойствами, но ими она обязана каучуку. Если бы каучук, как химическое соединение не вступило в реакцию с улучшающими его добавками не возникло бы новое соединение. То есть в заключении можно выделить два основных плюса:

Каучук – реакционоспособное соединение, получаемое из недр природы, являющееся сырьем для получения резины. Резина – высокоэластичный, устойчивый к агрессивному воздействию широко распространённый полимер.

Фото: © ua.all.biz

Обезопасить подошву на небольшой промежуток времени можно и дома, подручными средствами. Например, один из народных способов предлагает воспользоваться обычной теркой. Ей можно потереть подошву, чтобы создать рельеф.

Некоторые советуют вкручивать в толстую подошву шурупы: вкрутить их нужно но не до конца, оставляя зазор в несколько миллиметров между поверхностью подошвы и шляпкой шурупа.

Оба этих способа не рекомендуют использовать производители и продавцы обуви. Шуруп нарушит целостность подошвы, да и все равно при хождении войдет в подошву полностью, что может привести к обратному эффекту. Терка также повредит материал и тем самым уменьшит срок службы обуви. Метель требует особой походки

Но есть способы, не повреждающие подошву. Например, клей и песок. Клей нужно нанести на подошву зигзагом или сеточкой и присыпать песком. После того как песчано-клеевая смесь высохнет, можно выходить на улицу.

Пластырь из грубого материала также может на время обезопасить обувь в гололед. Нужно вырезать два куска, один закрепить ближе к носку, второй на каблук. Вместо пластыря можно наклеить на подошву куски наждачной бумаги или грубого войлока.

Но, напоминают, эксперты, если материал подошвы подходит для зимы, то ничего этого не потребуется. И порой, чтобы повысить сцепление, достаточно как следует вымыть рифленую подошву и очистить рисунок.

Безопасная высота

При выборе зимней обуви следует отдавать предпочтение комфортным моделям на плоской подошве или
низком широком устойчивом каблуке. Идеальная высота каблука не более 4 – 5 сантиметров

Зимние сапоги на более
высоком каблуке подходят не на каждый день, и передвигаться в них следует максимально осторожно. 

Нужно следить за тем, чтобы под нагрузкой каблук не
отъезжал назад, а мысок не поднимался над полом более чем на один сантиметр.
Если эти требования не соблюдены — будет очень сложно удержаться на ногах в
гололед.

Высота платформы также не должна превышать 5 сантиметров. По утверждению продавцов обуви, высокая платформа, несмотря на кажущееся удобство, тоже может стать причиной травмы – подвернуть на ней ногу в гололед значительно
проще.


Фото: Sibnet.ru

«К безопасным видам обуви на платформе можно отнести зимние ботинки на сплошной подошве. В такой обуви нет каблука, а платформа расположена по всей стопе. Зачастую она дополняется крупным рифленым узором, который обеспечивает дополнительную защиту и препятствует скольжению», ­– сказали в отделе сбыта ГК «Обувь России».

СОВЕТ: Примерять обувь следует во второй половине дня, когда нога немного отекла и имеет чуть больший размер. Кроме того, если планируется носить её с теплыми носками, то при примерке их нужно надеть. Если в каких-то местах обувь стесняет ногу, зимой велика опасность обморожений.

Типы

Термопластичные полиуретаны

Существует шесть общих классов коммерческих TPE (обозначения согласно ISO 18064):

  • Стирольные блок-сополимеры, TPS (TPE-s)
  • Термопластичные полиолефинэластомеры , ТПО (ТПЭ-о)
  • Термопластические вулканизаты, TPV (TPE-v или TPV)
  • Термопластичные полиуретаны , ТПУ (TPU)
  • Термопластический сополиэфир, TPC (TPE-E)
  • Термопластические полиамиды, TPA (TPE-A)
  • Не классифицируются термопластические эластомеры, ТПЗ

Примерами материалов TPE, которые происходят из группы блок-сополимеров, являются, среди прочего, CAWITON, THERMOLAST K, THERMOLAST M, Arnitel, Hytrel, Dryflex, Mediprene, Kraton , Pibiflex, Sofprene и Laprene. Среди этих стирольных блок-сополимеров (TPE-s) есть CAWITON, THERMOLAST K, THERMOLAST M, Sofprene, Dryflex и Laprene. Ларипур, Десмопан или Эластоллан являются примерами термопластичных полиуретанов (ТПУ). Sarlink, Santoprene, Termoton, Solprene, THERMOLAST V, Vegaprene или Forprene являются примерами материалов TPV. Примерами термопластичных олефиновых эластомеров (ТПО) являются соединения For-Tec E или Engage. Ninjaflex используется для 3D-печати .

Чтобы считаться термопластичным эластомером, материал должен обладать следующими тремя основными характеристиками:

  • Способность растягиваться до умеренного удлинения и после снятия напряжения возвращаться к чему-то близкому к своей первоначальной форме
  • Перерабатывается как расплав при повышенной температуре
  • Отсутствие значительной ползучести

Основные правила выбора обуви при гололеде

Экономия средств и времени при выборе обуви на морозный период может обернуться незапланированным визитом к травматологу. Поэтому, подыскивая зимнюю модель, нужно помнить о безопасности и придерживаться основных правил:

Обувь должна быть с антискользящей подошвой: из морозостойкого материала, с хорошим протектором.
Стоит отказаться от безусловно красивых, но неустойчивых сапожек на шпильке

Важно выбирать обувь, подошва которой предусматривает максимальную площадь соприкосновения с дорожной поверхностью. Допустимая высота каблука при этом – не более 4-5 см, а сам он должен быть широким

Такие сапоги обеспечат должный уровень сцепления и устойчивости в гололедицу, чего не скажешь о ботинках с зауженной высокой танкеткой.
Рекомендованная толщина основания – более сантиметра. Она убережет ноги от переохлаждения, не позволит материалу промерзнуть до заскорузлости, увеличивающей риск поскользнуться.

Часто можно встретить рейтинги самой нескользкой зимней обуви. Фаворитом там остаются утепленные ботинки с толстой рельефной либо плоской сплошной подошвой, как вариант – с невысоким широким каблуком. Среди наиболее удачных моделей для гололедицы популярностью пользуются и валенки из натурального овечьего войлока. Однако даже эти проверенные варианты могут подвести в неподходящий момент, потому что на самом деле на льду не скользит только подошва из верно подобранного материала.

От шпильки зимой стоит отказатьсяШирокий и устойчивый каблукАнтискользящая подошва с правильным рисунком протектораШирокая носовая часть

Разновидности

Разбираясь, что такое термопластичная резина, нелишним будет рассмотреть разновидности такого материала, поскольку обычная ТЭП-подошва подходит далеко не для каждой обуви. Например, состав для основы летних, демисезонных или зимних моделей будет несколько отличаться.

В момент приобретения новой обуви ТЭП на подошве очень устойчив, но через несколько месяцев активного использования случается так, что протектор теряет свои свойства, а сама подметка начинает постепенно истираться — ее заводская структура нарушается. Такие изменения говорят о том, что применимая при производстве термопластичная резина предназначена для эксплуатации в других погодных условиях.

Для зимы

Главные критерии при выборе зимней обуви — безопасность и способность сохранять тепло. Подошва ТЭП, используемая для изготовления таких изделий, имеет рельефный протектор, практически не скользит. Хорошее сцепление с поверхностью обеспечивает безопасность даже при сильном гололеде. В составе морозостойких подошв из термоэластопласта доминирует стирольный каучук, увеличивающий прочность и устойчивость к низким температурам. Благодаря добавлению минеральных наполнителей и стабилизаторов основа сохраняет хорошую эластичность даже при сильном морозе.

Летняя и демисезонная

При выборе обуви на теплое время года предпочтение отдается удобным и износостойким моделям. Приобретаемая пара должна быть устойчива к истиранию об асфальтовое покрытие, а также не сковывать движений ступни во время ходьбы. Полимерная основа обуви для лета и межсезонья — это обычная производная из классического состава указанных элементов, характеристика которых дана выше. Классическая подошва ТЭП отлично подходит для длительных прогулок, поскольку предусматривает небольшой вес и способность к амортизации.

Комбинированная

Благодаря тому, что термоэластопласты позволяют вводить в свой состав различные добавочные вещества, производятся так называемые комбинированные подошвы. Чаще всего такие заготовки содержат в себе смесь эластопластомера с полиуретаном и маркируются как ТЭП/ПУ. Комбинированная подошва считается более ценной, поскольку совмещает в себе свойства нескольких материалов. От каучуковых заготовок, обладающих хорошей пластичностью, ее отличает многообразие оттенков, а цвет материала не выгорает, не блекнет со временем. Именно поэтому ТЭП/ПУ очень часто применяется при производстве детской обуви.

Гость форума
От: admin

Эта тема закрыта для публикации ответов.